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DUCO VAN STRATEN

Abstract. This a write up of a talk given at the MATRIX conference at Creswick
in 2017 (to be precise, on Friday, January 20, 2017.) It reports on work in progress
with P. Candelas and X. de la Ossa. The aim of that work is to determine, under
certain conditions, the local Euler factors of the L-functions of the fibres of a family
of varieties without recourse to the equations of the varieties in question, but solely
from the associated Picard-Fuchs equation.

1. Introduction

It is very honourable to speak the last words in this nice conference; surely these words
are not the last on hypergeometrics, but rather some further exploration into Transhy-
pergeometria, the unknown land of our dreams. I will report on joint work in progress
with Philip Candelas and Xenia de la Ossa, [9]. I will start with some motivation.

2. Elliptic curves versus Rigid Calabi-Yau threefolds

Elliptic curves and rigid Calabi-Yau manifolds share many common features. As a
topological space, an elliptic curve is isomorphic to S1 × S1 and a rigid Calabi-Yau
threefold is a bit like S3 × S3, at least what its third cohomology is concerned. On
the arithmetic level, an elliptic curve E defined over Q determines a two dimensional
motive H1(E) and in a similar way a rigid Calabi-Yau threefold X defined over Q
produces a two dimensional motive H3(X). There are Hodge and p-adic realisations,
giving rise to L-functions that come from classical modular forms for some Γ0(N).

Space Motive Hodge Frobenius Weil Hecke
E/Q H1(E) 0 1 1 0 T 2 − apT + p |ap| ≤ p1/2 L(H1(E)) = L(f), f ∈ S2(Γ0(N))

X/Q H3(E) 1 0 0 1 T 2 − apT + p3 |ap| ≤ p3/2 L(H3(X)) = L(f), f ∈ S4(Γ0(N))

By the great theorem of Wiles [35], [36] we know that all elliptic curves over Q are
modular, and by further development of these methods, it was shown that rigid Calabi-
Yau threefolds defined over Q are also modular, [18], [14].

However, there are also big differences between these two cases. Elliptic curves depend
on a single modulus and form nice families. Classical normal forms are provided by
the Legendre family

Lλ : y2 = x(x− 1)(x− λ)

or the Hesse family

Hλ : x3 + y3 + z3 + λxyz = 0 ,

where λ is the parameter.
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On the other hand, as by definition h12 = 0, rigid Calabi-Yau spaces do not admit any
non-trivial deformations, and their occurrence is sporadic. No general description or
construction is known for them. We refer to [22], [37] for an overview of the exciting
bestiary.

Question

Which weight four cups forms appear as modular form of rigid Calabi-Yau manifolds?

For example, as can be seen from consulting [22], there are many different rigid Calabi-
Yau varieties leading to the weight four cusp form for Γ0(6), but I do not know of any
rigid Calabi-Yau threefold realising the weight four cusp form for Γ0(7).

2.1. How can rigid varieties appear in a pencil? Let us look at an example. The
famous Schoen quintic X1 studied in [26] is the degree 5 hypersurface in P4 given by
the equation

X1 : x51 + x52 + x53 + x54 + x55 = 5x1x2x3x4x5.

It is easily seen to have the 125 points

x5i = 1, x1x2x3x4x5 = 1

as nodal singularities. There exists a small resolution π : X −→ X1 that replaces
each node by a projective line P1. X is a rigid Calabi-Yau threefold: the infinitesi-
mal deformations of X can be identified with the infinitesimal deformations of X1 for
which the nodes lift, which are none. For small prime numbers the Euler factors of
the L-function can be determined counting points of X1 and correcting these counts
to get the numbers of points of the resolved manifold X. As the Galois representation
is determined by finitely many Euler factors, it was found that the L(H3(X1)) = L(f)
for some f ∈ S4(Γ0(25)), which was identified by C. Schoen.

Now note that the quintic X1 (and not X) is a member of the even more famous Dwork
pencil

Xψ : x51 + x52 + x53 + x54 + x55 = 5ψx1x2x3x4x5

that stands at the beginning of the mirror symmetry story, for which we refer to [8],
[11], [33], [24] . The third cohomology of Xψ is the direct sum of two pieces

H3(Xψ) = V ⊕ F .

Here the part F has Hodge numbers 0 100 100 0, and the part V has Hodge numbers
1 1 1 1. The Picard-Fuchs equation for this part leads to the hypergeometric
differential equation

P := Θ4 − 55t(Θ +
1

5
)(Θ +

2

5
)(Θ +

3

5
)(Θ +

4

5
), t = 1/(5ψ)5, Θ = t

d

dt
,

which describes a variation of Hodge structures (VHS) over S := P1 \ {0, 1/55,∞}. At
the three singular points these Hodge structures degenerate into mixed Hodge structures
(MHS). We refer to [25] for a detailed account of (mixed) Hodge theory. Quite generally,
the Jordan structure of the local monodromy determines the weight filtration. At t = 0
we have a so-called MUM-point, the monodromy has a maximal Jordan block. The
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mixed Hodge diamond looks like

1
0 0

0 1 0
0 0 0 0

0 1 0
0 0

1

(The weight is equal to the height in the diagram, counted by putting lowest row at
height zero; the operator N shifts two steps downwards.) The limiting mixed Hodge
structure is an iterated extension of Tate Hodge structures and it leads to the extension
data described in [12] that are equivalent to the so-called instanton numbers computed
in [8].

At t = 1/55 there is a single Jordan block of size 2 (a C-point in the terminology of
[31]). The mixed Hodge-diamond for H3 looks like:

0
0 0

0 1 0
1 0 0 1

0 1 0
0 0

0

So we see that the motive GrW3 H = H3(X) is like that of a rigid Calabi-Yau.

There is one further possible degeneration of a (1, 1, 1, 1)-VHS, that does not appear
in this family, namely where there are two Jordan blocks of size 2 (a K-point in the
terminology of [31]). The mixed Hodge diamond for H3 now looks like

0
0 0

1 0 1
0 0 0 0

1 0 1
0 0

0

So GrW2 H
3 is a (1, 0, 1)-Hodge structure that looks like the one appearing for K3-

surfaces with Picard number 20.

One of the motivations to look at general motivic (1, 1, 1, 1)-variations over S = P1 \Σ
is the natural appearance of weight four and weight three cusp forms for Γ0(N) at the
boundary points Σ ⊂ P1. Such motivic (1, 1, 1, 1)-variations are expected to arise from
Calabi-Yau operators.
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3. Calabi-Yau operators

Calabi-Yau operators, as understood in [4] and [31], are operators ’like’ P . First of all,
they are fourth order Fuchian differential operators

P ∈ C[t,Θ], Θ = t
d

dt
that are symplectic and have 0 as a MUM-point. If we look at it from the point of
view of differential operators, it is rather easy to satisfy these conditions, for example
by looking at operators of the form

P = Θ2PΘ2 + ΘQΘ +R ,

where P,Q,R are any polynomials with P (0) = 1. In order to classify as a Calabi-
Yau operator, one has to complement these easy conditions with further arithmetical
conditions that are supposed to hold if the operator is a Picard-Fuchs operator of a 1-
parameter family of Calabi-Yau varieties defined over Q. In [4] the following integrality
conditions were put forward and used to define Calabi-Yau operators.

I. The holomorphic solution φ0(t) has an integral power-series expansion:

φ0(t) ∈ Z[[t]] .

II. The q-coordinate has an integral power series expansion

q(t) ∈ Z[[t]] .

III. The normalised instanton numbers become integral

n0 := 1, n1, n2, . . . , nd, . . .

after multiplication by a common denominator.

Furthermore, the case where all nd = 0, d ≥ 1 is considered as trivial, as in that case P
is the third symmetric power of a second order operator. In fact, it is more natural to
have coefficients in Z[ 1

N
], so to allow denominators involving a finite set of bad primes.

Currently more than 500 operators are known that seem to satisfy these three condi-
tions (see [2], [3],[10]), but condition III is not proven to hold in a single case. The
first condition should already imply that the operator is of geometric origin, see [5].
There are many examples of operators that satisfy I, but not II. In a good number
of cases integrality of the q-coordinate have been proven [21], [13]. For some time it
was expected that condition III was implied by I and II, until Michael Bogner
[6] found an operator that satisfies I and II, but for which III appears to fail. There
exists an unpublished paper [34] in which it is claimed that Picard-Fuchs operators
coming from families of Calabi-Yau varieties indeed satisfy these three arithmetical
conditions.

Of course, one can also look at differential operators of order different from four, and
try to single out a particular nice sub-class of Calabi-Yau operators of arbitrary order.
For an account, we refer to [6] and [7].)

A particular nice example is operator AESZ 34

Θ4 − t(35 Θ4 + 70 Θ3 + 63 Θ2 + 28 Θ + 5)+

+t2(Θ + 1)(259 Θ2 + 518 Θ + 235)− 53t3(Θ + 1)2(Θ + 2)2

that was reported to us long ago by H. Verrill, [32]. It turned up prominently at
this conference, as it is associated to the 5-fold banana Feynman graph. As such, it is
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part of a very nice series of Calabi-Yau operators that exist for all orders. Its Riemann
symbol (see [19]) is 

0 1/25 1/9 1 ∞
0 0 0 0 1
0 1 1 1 1
0 1 1 1 2
0 2 2 2 2

 .

and the holomorphic solution has an expansion of the form

φ0(t) =
∞∑
n=0

Ant
n, An :=

∑
i+j+k+l+m=n

(
n!

i!j!k!l!m!

)2

.

As for all Calabi-Yau operators, there is a unique Frobenius basis of solutions around
0 of the form

φ0(t) = f0(t)
φ1(t) = log(t)φ0(t) + f1(t)
φ2(t) = log(t)2φ0(t) + 2 log(t)φ1(t) + f2(t)
φ3(t) = log(t)3φ0(t) + 3 log(t)2φ1(t) + 3 log(t)φ2(t) + f3(t)

where f0(t) ∈ Z[[t]], fi(t) ∈ tQ[[t]] (i = 1, 2, 3).

The points 1/25, 1/9, 1 are C-points: there appears a single logarithm ’between’ the
two equal exponents. The point ∞ is a K-point: there are two logarithms, again
between the two pairs of equal exponents. At each of the conifold points should appear
a weight four modular form of some level, at ∞ there is a weight three modular form.

4. Euler factors from Picard-Fuchs operators

It has been known from the work of Dwork [15], [16] that there is a very tight link
between the Frobenius operator and the Picard-Fuchs operator in a family of varieties.
For the sake of concreteness, let us consider as before a family Yt of Calabi-Yau 3-folds
defined over Q with a MUM-point at 0 and let us fix a prime p. Then the Frobenius
operator

F := Fp ∈ Aut(H3(Yt))

has a characteristic polynomial P (T ) = det(T − F ) of the form

T 4 + aT 3 + bpT 2 + ap3T + p6 ∈ Z[T ] ,

where

a = ap(t) = Tr(F ), b = bp(t) = (Tr(F 2)− Tr(F )2)/2p.

from which we get the local Euler factor

1 + ap−s + bp1−2s + ap3−3s + p6−4s

for the L-function of H3(Yt).
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4.1. Unit root method. Let us suppose that the Frobenius polynomial is irreducible,
but factors over Zp as

(T − u)(T − v)(T − p3/v)(T − p3/u) ∈ Zp[T ]

with ordp(u) = 0, ordp(v) = 1. Then u is called the unit-root and according to Dwork
[16], this unit root u = u(t) can be computed from the holomorphic solution φ0(t)
using p-adic analytic continuation of

φ0(t)

φ0(tp)

and evaluation at Teichmüller lift t̃ of t ∈ P1 (avoiding singular and supersingular values
of t.) Dwork’s unit-root method has been clarified by N. Katz [20] by formulating
it in terms of crystals. In her thesis, K. Samol [27] used this method to compute
Euler factors for many families of Calabi-Yau varieties, using only the Picard-Fuchs
equation. One of the important discoveries she made was that in many cases the method
even worked at the singular points of the differential equation, and thus managed to
determine weight four forms attached to C-points of Calabi-Yau operators, [28]. The
explicit control of the p-adic analytic continuation can sometimes be obtained from
Dwork congruences on the coefficients An of the holomorphic solution. In the context
of Calabi-Yau varieties defined by Laurent polynomials such Dwork congruences can
be shown to hold [29], [23].

4.2. Deformation method. The type of crystals we are considering are defined over
a ring R, which is a certain two-dimensional regular local sub-ring of Zp[[t]]. On R
there are two operations: the derivation

Θ : R −→ R, a 7→ t
∂a

∂t

and the lifted Frobenius map

σ : R −→ R, a(t) 7→ a(tp) .

One has

Θ ◦ σ = p σ ◦Θ .

We will consider a free R-module of rank four H, a non-degenerate symplectic pairing

〈−,−〉 : H ×H −→ R

and two operations

∇ : H −→ H, F : H −→ H

that we call the Gauss-Manin and Frobenius. The operator ∇ a connection, so is
supposed to satify the appropriate Leibniz rule, whereas F is σ-linear. These three
structures are required to satisfy the following compatibilities

i) Θ〈x, y〉 = 〈∇x, y〉+ 〈x,∇y〉.
ii) p3〈x, y〉 = 〈Fx, Fy〉.

iii) ∇F = pF∇.

Furthermore, we will have a Hodge-filtration

Fil3 ⊂ Fil2 ⊂ Fil1 ⊂ Fil0 = H

with

∇(Fili) ⊂ Fili−1, F (Fili) ⊂ piH .
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The first part of the structure may be called a polarised F-crystal, including the fil-
tration makes us speak about a polarised divisible Hodge F-crystals (Fontaine-Lafaille
crystals), we will call it a CY-crystal for short. Let us try to associate such a structure
to a differential operator of the form

P := Θ4 + tP1(Θ) + t2P2(Θ) + . . .+ trPr(Θ) .

For this, we write everything out in MATRIX-form. We let

H :=
3∑
i=0

Rφi ,

where the φi are abstract basis vectors, that behave with respect to differentiation as
the Frobenius basis of P . Writing out the action of Θ on them, we can construct the
companion matrix A(t) for the connection ∇ on H corresponding to P :

∇ = t
d

dt
− A(t) ,

where A(t) is of the form

A(t) =


0 0 0 ∗
1 0 0 ∗
0 1 0 ∗
0 0 1 ∗

 = A0 + A1t+ A2t
2 + . . .+ Art

r ∈ Q[t]4×4 .

Because of the MUM-condition, we have

A0 = N =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

 .

The matrix Σ of the symplectic form at t = 0 can be taken to be of the form
0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 .

We now write the Frobenius matrix in a series

F = F (t) = F0 + F1t+ F2t
2 + . . .

The above conditions, especially the Griffiths transversality and divisibility, lead to a
very specific form for the constant term F0:

F0 =


ξ 0 0 0
pα ξp 0 0
p2β p2α ξp2 0
p3γ p3β p3α ξp3

 ,

where ξ2 = 1 and ξβ = α2/2. One give an explicit formula for the series F (t) as

F (t) = E(tp)−1F0E(t) ∈ Q[t]4×4 ,
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where the matrix E(t) is a modification of the fundamental matrix for the differential
equation

Ẽjk = Θkφj =


φ0 Θ(φ0) Θ2(φ0) Θ3(φ0)
φ1 Θ(φ1) Θ2(φ1) Θ3(φ1)
φ2 Θ(φ2) Θ2(φ2) Θ3(φ2)
φ3 Θ(φ3) Θ2(φ3) Θ3(φ3)

 ∈ Q[[t]][log t]4×4 .

This matrix reduces mod t to E0
jk := Θk logj(t)/j! and we set

E := (E0)−1Ẽ = ”Ẽ
∣∣∣
log(t)=0

”.

In all examples we have computed so far, we could make the following

Observations

• All terms of the series F (t) are p-adically integral (depending linearly on α, β, γ.)

• One can write

F (t) =
ϕ(t)

∆(t)p−1
mod p3 ,

where ϕ(t) ∈ (Z/p3)[t]4×4 is a polynomial matrix and ∆(t) is the discriminant
of the operator P .
• The poles cancel at all singularities of P , except for the apparent singularities.

So if P does not have apparent singularities, the matrix F (t) mod p3 is in fact
polynomial.
• We can ’trivially’ read off

a(t) = −TrF (t) mod p3 , b(t) = (Tr(F (t)2)− Tr(F (t))2)/2p mod p3

and these do not depend on the choice of α, β, γ (this was already observed in
[27].) This suffices to determine the local Euler factor at p for p ≥ 5.

Using this, we can compute Euler factors even at the singular points, as long as they
are not apparent singularities. In particular, it works at the conifold points and we do
not have to care about super-singular behaviour. For example, for the above mentioned
operator AESZ34 one finds characteristic polynomials of Frobenius of the form

T (T − pχ(p))(T 2 − apT + p3)

for some character χ. We find

1/25 1/9 1
a7 32 −16 −16
a11 −60 12 12
a13 −34 38 38
a17 42 −126 −126

So we recognise, using the table in [22], the weight four cusp forms 6/1 for Γ0(6) at
t = 1 and t = 1/9, and the form 30/1 for Γ0(30) at t = 1/25.
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4.3. Lifting to higher order. Let us set α = β = 0 and ξ = 1, but keep γ as a
parameter. It appears that there is a unique choice for γ mod p for which

F (t) =
ϕ(t)m(p)

∆(t)`(p)
mod p4

where `(p) is a small slope linear functions of p and ϕ(t)m(p) is a matrix-polynomial
of small degree m(p) linear in p. For all other choices of γ this structure seems to get
lost. By playing the same game modulo p5, p6, p7, etc, we can determine a number γ
modulo p2, p3, etc. Continuing this way, we obtain a well-defined p-adic number γ that
goes into the Frobenius matrix at the MUM-point:

F0 =


1 0 0 0
0 p 0 0
0 0 p2 0
γ 0 0 p3


For the quintic and p = 11 one finds

γ = 2 + 2 · 11 + 3 · 112 + 7 · 113 + 5 · 114 + 5 · 115 + 6 · 116 + . . .

Recall the relation between the p-adic ζ(3) and the p-adic gamma function:

−2ζp(3) = log Γ′′′p (0) = Γ′′′p (0)− Γ′p(0)3 .

The following marvellous miracle seems to take place:

Observation

• γ = r · ζp(3).
• r = c3(X)/d, where d is the degree of the mirror manifold.

For the quintic r = 200/5 = 40. This is reminiscent of a very similar matrix describing
the hermitian form 〈x, y〉, where · is the Frobenius at∞, that is, complex conjugation,
and the real ζ(3) appears at the place of ζp(3)!

This is the end of the talk and of the conference, but I feel it is the beginning of
something great.
During the conference we have seen some amajzing maths, we had a great taam, it was
really a naas workshop.

A great thank to the organisers Masha, Ling and Wadim!
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